Oxystress inducing antitumor therapeutics via tumor-targeted delivery of PEG-conjugated D-amino acid oxidase.

نویسندگان

  • Jun Fang
  • Dawei Deng
  • Hideaki Nakamura
  • Teruo Akuta
  • Haibo Qin
  • Arun K Iyer
  • Khaled Greish
  • Hiroshi Maeda
چکیده

We had developed a H(2)O(2) generating enzyme, polyethylene glycol conjugated D-amino acid oxidase (PEG-DAO), which exhibited potent antitumor activity by generating toxic reactive oxygen species, namely oxidation therapy, subsequently showed remarkable antitumor effect on murine Sarcoma 180 solid tumor, by taking advantage of the enhanced permeability and retention effect. Along this line, we report here the preparation of PEG-DAO by use of recombinant DAO and its antitumor activity by using various tumor cell lines and tumor models. Recombinant DAO (rDAO) was obtained from E. coli BL21 (DE3) carrying the porcine DAO expression vector with high yield (20 mg/l) and high enzyme activity (5.3 U/mg). Pegylated rDAO (PEG-rDAO) showed high stability against sonication, repeated freezing/thawing, lyophilization and exhibited superior in vivo pharmacokinetics. PEG-rDAO had a molecular size of 65 kDa and existed as nanoparticles in aqueous solution with mean particle diameter of 119 nm. In vitro experiments showed strong cytotoxicity of PEG-rDAO against various tumor cells, whereas less cytotoxicity was found against various normal cells. In vivo antitumor treatment was carried out using 2 mice tumor models, namely colon 38 tumor and Meth A tumor model. PEG-rDAO was administered i.v. and after an adequate lag time, D-proline (the substrate of DAO) was injected i.p. to the tumor-bearing mice. Consequently, preferential generation of H(2)O(2) in the tumor was successfully achieved, which resulted in remarkable suppression of tumor growth without any visible side effects. These findings suggest a potential of PEG-rDAO as a novel anticancer strategy toward clinical development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tumor-targeted induction of oxystress for cancer therapy.

Reactive oxygen species (ROS), such as superoxide anion radicals (O.-2) and hydrogen peroxide (H2O2) are potentially harmful by-products of normal cellular metabolism that directly affect cellular functions. ROS is generated by all aerobic organisms and it seems to be indispensable for signal transduction pathways that regulate cell growth and reduction-oxidation (redox) status. However, overpr...

متن کامل

Tumor-targeted delivery of polyethylene glycol-conjugated D-amino acid oxidase for antitumor therapy via enzymatic generation of hydrogen peroxide.

Hydrogen peroxide (H(2)O(2)) is a strong oxidant that induces apoptosis of tumor cells in vitro. Here, we investigated the antitumor activity of an H(2)O(2)-generating enzyme, D-amino acid oxidase (DAO), and its conjugate with polyethylene glycol (PEG; PEG-DAO). Compared with DAO, PEG-DAO showed improved pharmacokinetic parameters in mice after i.v. injection. PEG-DAO administered i.v. accumula...

متن کامل

Generation of Hydrogen Peroxide d-Amino Acid Oxidase for Antitumor Therapy via Enzymatic Tumor-targeted Delivery of Polyethylene Glycol-conjugated

Hydrogen peroxide (H2O2) is a strong oxidant that induces apoptosis of tumor cells in vitro. Here, we investigated the antitumor activity of an H2O2-generating enzyme, D-amino acid oxidase (DAO), and its conjugate with polyethylene glycol (PEG; PEG-DAO). Compared with DAO, PEG-DAO showed improved pharmacokinetic parameters in mice after i.v. injection. PEG-DAO administered i.v. accumulated sele...

متن کامل

Formulation of temozolomide by folic acid-conjugated tri-block copolymer nanoparticles for targeted drug delivery

Introduction: Glioblastoma multiforme (GBM) is the most frequent primary malignant tumor of the brain. But, the treatment of GBM is one of the most problems in cancer therapy because of poor drug penetration across the blood-brain barrier (BBB). Targeting drug delivery system and conjugating targeting moieties was recognized to overcome the poor penetration of chemotherapy drug...

متن کامل

Influence of Folate Conjugation on the Cellular Uptake Degree of Poly(allylamine hydrochloride) Microcapsules

The microcapsules in drug delivery systems can prevent degradation of drugs and help to control the release rate. To enhance the targeted delivery effect of the microcapsules to cancer cells, some specific ligands such as folic acid (FA) are necessarily further conjugated. Herein, covalent poly(allylamine hydrochloride) (PAH) multilayers were fabricated on CaCO3 microparticles under the cross-l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of cancer

دوره 122 5  شماره 

صفحات  -

تاریخ انتشار 2008